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Abstract. We investigated the mean-free path effects on the magnetoresistance of ferromagnetic nanocon-
tacts. For most combinations of parameters the magnetoresistance monotonously decreases with increasing
the contact cross-section. However, for a certain choice of parameters the calculations show non-monotonous
behavior of the magnetoresistance in the region in which the diameter of the contact becomes compara-
ble with the mean-free path of electrons. We attribute this effect to different conduction regimes in the
vicinity of the nanocontact: ballistic for electrons of one spin projection, and simultaneously diffusive for
the other. Furthermore, at certain combinations of spin asymmetries of the bulk mean-free paths in a
heterocontact, the magnetoresistance can be almost constant, or may even grow as the contact diameter
increases. Thus, our calculations suggest a way to search for combinations of material parameters, for
which high magnetoresistances can be achieved not only at the nanometric size of the contact, but also at
much larger cross-sections of nanocontacts which can be easier for fabriaction with current technologies.
The trial calculations of the magnetoresistance with material parameters close to those for the Mumetal-Ni
heterocontacts agree satisfactorily with the available experimental data.

PACS. 72.25.Ba Spin polarized transport in metals – 73.63.Rt Nanoscale contacts – 75.47.De Giant
magnetoresistance

1 Introduction

Magnetic point contacts showing an extraordinary high
magnetoresistance (MR) [1–7] offer a feasible avenue to a
new generation of nanosize read heads for computer hard
disks [8]. Theoretical studies of the MR phenomenon in
magnetic nanocontacts [2,9–14] were focused mainly on
the contact size and conduction-band spin-polarization ef-
fects on the MR. Other important material parameters
such as spin-dependent mean-free paths (MFP) of con-
duction electrons in contacting ferromagnetic metals had
not been taken into account. At the same time, it is well
known for cobalt and permalloy that the bulk spin-up and
spin-down conduction electron MFP may differ one from
the other by up to 7 times (see, for example, Refs. [15,16]).
Then, at a certain contact size, one conductance spin chan-
nel can be in the ballistic conductance regime, while the
second spin channel still remains in the diffusive conduc-
tion regime. The situation is complicated even more if
a nanocontact is realized between two non-identical fer-
romagnets (ferromagnetic heterocontacts) [10,17,18]. The
aim of this paper is to study the mean-free path effects on
the MR of magnetic nanocontacts.
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2 Magnetoresistance in ferromagnetic
nanocontacts – mean-free path effects

In a previous paper [19], we developed the quasiclassical
theory of electric transport through magnetic nanocon-
tacts. The theory is most general in considering the phys-
ical parameters of contacting ferromagnetic metals: the
ferromagnets can be either identical or different, the Fermi
momenta of conduction electrons spin subbands, as well
as spin-dependent MFP of both ferromagnets can be arbi-
trary. In the paper [19] we studied in detail the influence
of spin polarization and the mutual disposition of conduc-
tion bands for the case of ferromagnetic heterocontacts.
To investigate effects of spin-dependent MFP we retrieve
at first basic formulas for the conductance of a nanoscopic
heterocontact obtained in reference [19]. The conductance
for one of the two spin channels of conduction through the
nanocontacts reads:
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In the above formulas the subscript L or R refers to the
left- or right-hand side of the contact, κ = klL↑ and k are
the renormalized wavenumber and the wavenumber of an
electron, respectively. They lie in a plane perpendicular
to the general direction of the current flow. The other
notations are as follows:
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where RL
α = lLα/lL↑, RL

Rα = lLα/lRα, RR
α = lRα/lR↑ =
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αRL
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tion law pL
F sin θL = pR

F sin θR has been used to bring the
integration variables to the left-hand side incidence angle
θL. If pL

F < pR
F then xc = 0, xcr =

√
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F , and the upper sign in the square roots of
equations (11) and (12) has to be used. When pL
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√

1 − (δ)−2, and the lower sign in the
above mentioned square roots has to be used. Other no-
tations are explained as follows: pi

F and li are the Fermi

momentum and the mean-free path of the ith side fer-
romagnet, respectively; a is a radius of the nanocontact,
J1(κa/lL↑) = J1(ka) is the Bessel function; 〈...〉θi

is the
solid-angle averaging, and xi = cos θi is a cosine of the
incidence angle on the ith side ferromagnet, respectively.

The set of parameters, RL
α, RR

α , RL
Rα, which quanti-

fies relationships between the spin-dependent MFP, needs
to be explained in more detail. The quantities RL

α and
RR

α are formal spin asymmetries of the bulk MFP for the
left- and right-hand sides, respectively. If the spin index
α coinsides with a spin index of a mean-free path in the
system, used for normalization (lL↑ in the actual case),
then RL

↑ = RR
↑ = 1. For the opposite spin projection,

RL
↓ = lL↓/lL↑, RR

↓ = lR↓/lR↑ are the material parameters
which can be related to the bulk spin asymmetry coeffi-
cient [27],
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In equation (15), δL(R) = p
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spin polarization of the conduction band of the left-
(right-) hand side ferromagnetic metal.

In addition, the conductance of the contact depends
on the ratio of the left- to the right-hand side mean-free
paths, RL

Rα. Then, provided that one of the MFP is known,
for example, lL↑, the other three can be retrieved with the
use of the three parameters: RL

↓ , RR
↓ , RL

R↓. A somewhat
complicated notations is the cost for the universality of
the set of equations (1)–(13), describing four spin channel
conductances which appear for the parallel (P) and an-
tiparallel (AP) alignment of magnetizations (see below).

To account for a finite length of the nanocontact,
we put a linear-profile domain wall in the constric-
tion of the nanocontact [20–23]. The angular- and spin-
dependent quantum-mechanical coefficient of transmission
D through the linear domain wall reads:
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FM t(L)/2mEex, q2 = −p2

Fm t(L)/2mEex, where
L is a width of DW; Ai(z), Bi(z), Ai′(z), and Bi′(z) are the
Airy functions and their derivatives; pm = pFm cos (θm)
and pM = pFM cos (θM ) are the normal components of
the wave vector of minority and majority subband, re-
spectively. Note here that pm is used for a subband with
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Fig. 1. Dependence of MR on the contact radius for the case of homocontact (δL = δR = 0.4). The mean-free paths ratio is: a)
RL

↓ = 5.0, RL
R↓ = 1.0; b) RL

↓ = 2.0, RL
R↓ = 1.0; c) RL

↓ = 1.0, RL
R↓ = 1.0; d) RL

↓ = 5.0, RL
R↓ = 3.0, and e) RL

↓ = 2.0, RL
R↓ = 3.0.

RR
↓ = 5.0, 2.0, 1.0, 0.5, 0.2 in accordance with the labels set from 1 to 5.

a smaller Fermi momentum, while pM for a subband with
a larger Fermi momentum whatever the spin projection
of the subband, or the side of the contact – left- or right-
hand, is. The quantum-mechanics textbook expression for
a coefficient of the transmission through the step-like DW
(band-offset model), Dstep(xL) = 4pMpm/ (pM + pm)2,
can be retrieved from equation (16) in the limit of L → 0.
Here, we omit the spin index to simplify appearance of
the above formulas.

The magnetoresistance of a magnetic nanocontact can
be calculated as follows:

MR =
σP − σAP

σAP
, (18)

where σP (AP ) = σ
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allel, P (antiparallel, AP ), mutual alignment of magneti-
zation in the contacting ferromagnets. σ

P (AP )
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is conductance of the spin-up (spin-down) conduction elec-
tron spin-channel, equation (1), at the parallel (antiparal-
lel) alignment. Then, MR is positive if the physical ef-
fect itself is negative (resistance drops when magnetic
field is applied). Now, the dependence of MR on the
spin-dependent bulk electron MFP can be investigated
for physically distinguished combinations of ferromagnetic
metals.

In a simple parabolic band structure we use here,
the heterocontacts are sorted out by the mutual posi-
tions of bottoms of their conduction bands at the parallel
alignment of magnetizations. The first case of the same
ferromagnetic material in a contact seems to be trivial,

however, one side can differ substantially in electron scat-
tering compared with the other. In fact, 3d and 4d so-
lutes in iron [24,25] may result in the dramatic increase of
the spin asymmetry of the conduction-electron scattering,
whereas the Fermi momenta of the spin subbands remain
practically unchanged because of the low impurity concen-
tration. As a result, in our calculations we can keep band
structure parameters (Fermi momenta and spin polariza-
tions) of the contacting ferromagnets unchanged, but vary
the spin-dependent MFP of the sides independently in a
wide range.

Figure 1 displays the calculated dependences of MR
on the contact radius for a set of MFP spin asymmetries.
The contact length L is chosen equal to 10 Å (1 nm). The
general conclusion is that MR rapidly drops as the con-
tact size increases beyond the mean-free path for the either
spin channel of conductance. It is an indication that to en-
hance MR one has to strive towards the ballistic regime of
conductance in vicinity of the contact. On the other hand,
our calculations give a hint that for certain combinations
of the mean-free path asymmetries, Figures 1b, 1e, and
especially Figure 1c, the reduction of MR with increasing
the contact cross-section size is not so drastic, and the
requirement of the nanometric contact size to reach high
MR values is not so strict.

For heterocontacts, three physically distinct combina-
tions are considered (see insets in Figs. 2–4), and MR for
every combination is calculated against the contact ra-
dius for a set of MFP values. Figure 2 shows the case when
one ferromagnet has an essentially higher conduction elec-
tron density compared with the other. The absolute MR
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Fig. 2. Dependence of MR on the contact radius for the case of heterocontact with pL
F↓ < pL

F↑ < pR
F↓ < pR

F↑ (δL = 0.4,
δR � 0.73). The layout and choice of the mean free paths are the same as in Figure 1.

Fig. 3. Dependence of MR on the contact radius for the case of heterocontact with pL
F↓ < pR

F↓ < pL
F↑ < pR

F↑ (δL = 0.4,
δR = 0.5). The layout and choice of the mean-free paths are the same as in Figure 1.

values are not so exciting, especially from the point of
view of magnetic field sensor applications, however, MR
equation (18), can be not only positive but also negative,
depending on the combination of the spin asymmetries
of the contacting ferromagnets (see Figs. 2b, 2c and 2e).
Moreover, Figures 2a, 2b, 2d and 2e show non-monotonous
behavior MR(a) with a minimum between a and 3a,
which we attribute to the mixed regime of conductance

in the vicinity of the contact: ballistic for one spin chan-
nel (a/lL↓ � 1), and diffusive for the other (a/lR↑ � 1).

Figure 3 shows the case when one ferromagnet has a bit
higher conduction electron density than the other. The ab-
solute MR values ∼130% are much higher in the ballistic
limit (a/lL↑ � 1) than in the previous case. Again, Fig-
ures 3d and 3e show the non-monotonous behavior of MR
as the function of the contact radius. Figures 3b, 3c and 3e
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Fig. 4. Dependence of MR on the contact radius for the case of heterocontact with pL
F↓ < pR

F↓ < pR
F↑ < pL

F↑ (δL = 0.4,
δR � 0.63). The choice of the mean-free paths are the same as in Figure 1 except for the plot e). The plot e) is the dependence
of MR on the contact radius for Mumetal-Ni heterocontact (pL

F↑(Mu) = 0.61 Å−1, pL
F↓(Mu) = 1.1 Å−1, pR

F↑(Ni) = 0.65 Å−1,

pR
F↓(Ni) = 1.08 Å−1). lL↓(Mu) = 0.6 nm and the parameters of mean-free path ratios are as follows: RL

↓ = 0.13 [15,29], RL
R↓ =

0.2 [15,29,30], RR
↓ = 0.3, 0.5 and 0.75 in accordance with the possible range for Ni [30].

suggest combinations of parameters, for which MR keeps
high values with increasing the contact cross-section.

Figures 4a–4d shows the case of the contact when fer-
romagnets have similar conduction electron densities but
different spin polarizations of the conduction band. Al-
though MR magnitudes are moderate, Figures 4b and 4c
suggest a weak dependence of MR on the contact radius
at certain combinations of the MFP spin asymmetries (see
the figure caption).

Concluding the chapter, we note that in contrast to the
case of large-area thin film contacts [26], where MR does
not depend on mean-free paths, in the case of a nanocon-
tact we have strong dependence on the spin asymmetry
as well as on the absolute value of the MFP. The differ-
ent behavior is explained by the shrinkage of a current
to a nanocontact size of the same scale as a mean-free
path. Then, if the spin asymmetries are large, one of the
spin channels of conduction can be ballistic, but the other
one, or the matching spin channel of the opposite lead of
the junction, can be in the diffusive regime either. Upon
the change of the contact size the conduction regimes in
the two spin channels change gradually, that makes MR
dependent on the mean-free paths. In the case of two flat
layers, the current flows homogeneously through the inter-
face of a formally infinite lateral dimension. Then, there is
no a structural dimension comparable with the mean-free
paths that makes the short-scale MFP effects ineffective.

3 Discussion and conclusions

To the best of our knowledge there are two reports on
MR of ferromagnetic heterocontacts with metallic con-
ductance between Mumetal and Ni [10,17]. Mumetal
(Ni77Fe14Cu5Mo4) is close to Permalloy (Ni80Fe20) in its
composition, hence, it has a very short mean-free path in
the spin-down conduction channel [15,16,28,29]. There-
fore, we refer Mumetal-Ni heterocontact as corresponding
to the third case (Fig. 4). For the numerical calculations
of MR we used MFP of conduction electrons in permal-
loy [15,29,30] as guess values for Mumetal, and MFP in
nickel estimated from the data of reference [30]. The larger
spin-dependent Fermi momentum in Ni has been assigned
to the spin-down subband which has higher density of
states according to the spin-polarized density-of-state cal-
culations (see, for example, [31,32]). Results of the cal-
culations are given in Figure 4e. For the ballistic regime
of conductance (a/lL↓ → 0) MR is close to 100% (L =
0.5 nm) which agrees satisfactorily with experimental MR
values = 78–132%, Figure 2 in [10], at lowest conductances
for the P-alignment of magnetizations.

To summarize, in this paper we investigated mean-
free path effects on MR of ferromagnetic nanocontacts.
In most cases the MR monotonously decreases as the con-
tact cross-section increases. For some cases with a big dif-
ference in spin subband mean-free paths, the calculated
MR shows non-monotonous behavior in the region where
the diameter of the contact becomes comparable with the
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mean-free path of electrons. We attribute this effect to
the gradual change of conduction regimes in vicinity of
the nanocontact upon changing the contact cross-section
size. As a result, at certain combinations of the mean-free
paths in heterocontacts, the MR can be almost constant
or even increase a bit as the contact size increases. The
latter findings open a way to search for proper solutes for
ferromagnetic materials, which provide conditions to re-
alize high MR at technologically available cross-sections
of the nanocontacts. The trial calculations of the mag-
netoresistance with material parameters close to that for
the Mumetal-Ni heterocontacts agree satisfactorily with
the available experimental data.

The work was supported by EC through the project NMP4-
CT-2003-505282, and by the Russian Ministry of Science and
Education.
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